PRINCE WILLIAM SOUND 1988 HERRING BIOMASS PROJECTION

Ву

Gene J. Sandone

Regional Informational Report $\frac{1}{2}$ / No. 2A88- $\frac{1}{2}$ 105

Alaska Department of Fish and Game Division of Commercial Fisheries Region II Juneau, Alaska

June 1988

 $\frac{1}{2}$ / Contribution 88-05 in the Prince William Sound Area Data Report Series. The Regional Information Report Series was established in 1988 to provide an information access system for all unpublished divisional reports. These reports frequently serve diverse ad hoc informational purposes or archive basic uninterpreted data. To accommodate needs for up-to-date information, reports in this series may contain preliminary data.

TABLE OF CONTENTS

																											Page	;
LIST OF TABL	ES	•		•		•		•					•		•			•				•	•	•	•	•	iii	i
LIST OF FIGU	JRE		•	•		•			•		•	•			•	•		•	•	• .		•	•	•			i i i	i
LIST OF APPL	ENDICES		• •	•	•	•	•			•		•	•		•				•	•				•			, iv	,
INTRODUCTION	١		• •	•	•		• •				•				•		•	•			•			•	•	•	1	
METHODS	• • • •			•	•		•			•				•		•	•	•	•	•	•			•	•		1	
RESULTS	• • • •					•				•			•	•		•			•		•	•	•	•	•	• ,	2	
LITERATURE (CITED .	• ,		•					•			•					•			.•		•					4	
APPENDICES		•																									8	

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1.	Prince William Sound District year-class composition of the 1987 Pacific herring harvest, escapement, and total run biomass and the 1988 projected biomass. Natural mortality rate (M) at age 8 = 0.450; Total 1987 herring biomass = 27,020 tons	5
2.	Prince William Sound District year-class composition of the 1987 Pacific herring harvest, escapement, and total run biomass and the 1988 projected biomass. Natural mortality rate (M) at age 8 = 0.450; Total 1987 herring biomass = 40,000 tons	6
	LIST OF FIGURES	
Figur	<u>'e</u> -	<u>Page</u>
1.	Pacific herring biomass stratification schedule, Prince William Sound, 1987	7

LIST OF APPENDICES

APPENDIX	Α:	HERRING BIOMASS DISTRIBUTION BY AGE AND STRATUM	<u>Page</u>
A.1	-	Prince William Sound herring biomass distribution by age and year class, Stratum A, 1987	9
A.2	-	Prince William Sound herring biomass distribution by age and year class, Stratum B, 1987	10
A.3	-	Prince William Sound herring biomass distribution by age and year class, Stratum C, 1987	11
A.4	-	Prince William Sound herring biomass distribution by age and year class, Stratum D, 1987	12
APPENDIX	B:	COMMERCIAL HERRING HARVEST BY GEAR TYPE	
B.1	-	Prince William Sound commercial purse seine harvest by age and year class, 1987	13
B.2	-	Prince William Sound commercial gill net harvest by age and year class, 1987	14
B.3	-	Prince William Sound commercial purse seine pound harvest by age and year class, 1987	15
APPENDIX	C:	1988 PRINCE WILLIAM SOUND HERRING BIOMASS PROJECTION SPREADSHEETS	•
c. 1		Prince William Sound 1988 herring projection biomass spreadsheet; Natural Mortality at age 8 = 0.300; 1987 PWS total run biomass = 27,020	16
C.2	-	Prince William Sound 1988 herring projection biomass spreadsheet; Natural Mortality at age 8 = 0.450; 1987 PWS total run biomass = 27,020	17
C.3	. -	Prince William Sound 1988 herring projection biomass spreadsheet; Natural Mortality at age 8 = 0.600; 1987 PWS total run biomass = 27,020	18
C.4		Prince William Sound 1988 herring projection biomass spreadsheet; Natural Mortality at age 8 = 0.300; 1987 PWS total run biomass = 40,000	19
C.5	-	Prince William Sound 1988 herring projection biomass spreadsheet; Natural Mortality at age 8 = 0.450; 1987 PWS total run biomass = 40,000	20

LIST OF APPENDICES (Continued)

APPENDIX		1988 PRINCE SPREADSHEETS		SOUND	HERRING	BIOMASS	PROJECTION	<u>Page</u>
C.6	- .	spreadshee	t; Natur	al Mor	tality at	age 8 =	tion biomass = 0.600;	21

INTRODUCTION

The purpose of this report is to present a Prince William Sound herring biomass projection for the 1988 spring spawning migration.

METHODS

The 1988 Prince William Sound herring total run biomass projection is based on the 1987 age-specific escapement biomass, adjusted for growth and mortality, and recruitment. During the 1987 spawning migration, the age structure of the spawning biomass changed from a dominance of older to younger-aged herring during the spawning migration. Consequently, due to this temporal age-class variability, an age-specific biomass distribution schedule based on the mean AWL age-class structure was inappropriate. Therefore, in order to more precisely estimate the contribution of each age-class to the total run biomass particular daily biomass estimates were associated with individual, or sets of herring age, weight and length (AWL) samples obtained from assumed non-selective gear types. Non-selective gear types were assumed to include purse seines and beach seines. The 1987 herring AWL sample summaries are found in Sandone et al. (*In press*).

Daily biomass estimates were partitioned by time and area into strata (A, B, C, and D) (Figure 1). Strata definitions were based upon observed changes in the daily area-specific biomass estimates and/or age-class composition structure reflected by associated AWL samples. The stratum biomass estimate was also expressed as a percent of the total run biomass (Figure 1), so that adjustments to the total run biomass could be easily incorporated into the stratification procedure.

In order to determine the age structure of the biomass within each strata, the estimated strata biomass was distributed by the mean age contribution (percent by weight) of the AWL samples collected within the stratum (Appendix A). The estimated total herring biomass was determined by summing the contribution of each age (tons) across all strata. The 1987 age-specific escapement biomass was calculated simply by subtracting the total commercial harvest from the total run biomass for each age. The age distribution of the various commercial harvests (Appendix B) was based on the AWL samples obtained from each fishery harvest.

Age-specific instantaneous natural mortality rates (M) are necessary in order to determine the natural mortality of the escapement biomass. Direct estimates of natural mortality rates, however, were not available for Prince William Sound herring. Therefore, a range of age-specific mortality rates were employed in the projection calculations. These natural mortality rates represent the extreme and mean rates used by Funk and Sandone (*In press*) in their assessment of Prince William Sound herring using cohort analysis. These age-specific rate schedules are identified by the mortality rate assigned to age-8 herring (age interval 8-9). The mortality rate schedule

used in this report were: M at age-8 = 0.300, 0.450, and 0.600.

Age-specific instantaneous growth rates (G) were based on herring weight at age calculated from the Prince William Sound herring weight-age relationship (Funk and Sandone *In press*). The availability (A) of a cohort-at-age (Funk and Sandone *In press*) was used to estimate that portion of the total cohort biomass which was expected to contribute to the spawning biomass. Availability was defined as that portion of the total cohort which was on the spawning grounds during the spring harvest period.

The 1987 escapement biomass was projected forward in time using model:

 $B_{1988,t+1} = E_{1987,t} * e^{(G-M)} * A_{1988,t+1} / A_{1987,t}$

where:

 $B_{1988,t+1} = 1988$ projected biomass for age t+1 $E_{1987,t} = 1987$ escapement biomass for age t, $A_{1988,t+1} = A_{1981,t} = A_{1987,t} = A_{1987,t} = A_{1987,t}$

The total 1988 projected biomass was determined by summing the age-specific biomass projections. A minimal projected biomass of age-3 herring for the 1988 spawning migration was estimated by substituting the relationship between availability of age-4 to age-3 herring for the unavailable age-3 to age-2 availability relationship. The availability of age-2 herring was unavailable, but considered less than the availability of age-3 herring. Since the actual age-4 to age-3 herring availability relationship was most likely smaller than the age-3 to age-2 relationship, the projection of age-3 herring was considered a minimal projection estimate.

The combined strata estimated herring biomass of 27,020 tons (Figure 1) was slightly larger than the peak daily estimate of 24,090 tons (Brady 1988). However, aerial assessment of the herring biomass probably documents only a portion of the total herring biomass. Therefore, based on a combination of factors, the 1987 spawning biomass was assessed at between 40-45,000 tons (James Brady, Alaska Department of Fish and Game, Cordova, personal communication). Due to the difference in observed versus assessed biomass, a 1988 biomass projection was calculated for the escapement biomass resulting from a 1987 total run biomass of 27,020 and 40,000 tons.

RESULTS

The 1987 escapement biomass based on a total run biomass of 27,020 and 40,000 tons was 20,837 and 33,817 tons, respectively. The six different projection scenarios, which resulted from the employment of three different natural mortality rate schedules (M at age-8 = 0.300, 0.450, and 0.600) and two different 1987 escapement biomass estimates, provided a range of projected 1988 total run estimates of from 23,840 to 51,112 tons (Appendix C). However, the scenarios based on the mid-value natural mortality rate (M at age-8 =

0.450) yielded 1988 herring biomass projections which were very similar to the 1987 total run biomass. Using this mid-value natural mortality rate schedule, the projected 1988 total run biomass based on a 1987 total biomass run of 27,020 and 40,000 tons was 27,698 and 43,992 tons, respectively (Table 1 and 2). However, regardless of the scenario used, the age 4 (1984 year class) herring are expected to dominate the 1988 total run biomass. This strong year class is projected to contribute between 65% and 67% by number to the total run herring biomass. The previously dominant 1980 (age 8) and 1981 (age 7) year classes are expected to contribute no more than 8% and 13%, respectively, to the 1988 total run biomass.

LITERATURE CITED

- Brady, J. A. 1987. Distribution, timing and relative biomass indices for Pacific herring as determined by aerial surveys in Prince William Sound 1978 to 1987. Prince William Sound Data Report No. 87-14. Alaska Department of Fish and Game, Commercial Fisheries Division, Juneau.
- Funk, F. C., and G. J. Sandone. *In press*. Stock assessment of Prince William Sound Herring 1973-1987, using cohort analysis. Alaska Department of Fish and Game, Division of Commercial Fisheries, Juneau.
- Sandone, G. J., S. Sharr, and J. A. Brady. *In press*. Prince William Sound commercial Pacific herring harvest summary, data presentation and analysis 1984-1987. Alaska Department of Fish and Game, Division of Commercial Fisheries, Juneau.

Table 1. Prince William Sound District year-class composition of the 1987 Pacific herring harvest, escapement, and total run blomass and the 1988 projected blomass.
Natural mortality rate (M) at age 8 = 0.450; Total 1987 herring blomass = 27,020 tons.

		X by No.	0	0.4	8.99	7.2	4.3	6.11	7.3	1.3	9.9	0.3	0.1	0.0	00.7
55		X by Wt. X	0	0.2	58.1	7.6	5.1	15.5	10.3	1.9	0.7	4.0	0.1	0.0	0 000
1988 PMS Projected Berring Blomass	No.of Flsh	(* 1,000) x		783	141,921	15,344	9,043	25,195	15,594	2,741	973	280	189	4	250
S Projected	Blomass	(tons)		8	16,104	2,092	1,405	4,299	2,849	256	194	121	33	-	100
1988 PA	Age	Class	c	N M	4	'n	9	1	œ	6	01	Ħ	21	#	
	Year	Class	2001	1985	1984	1983	1982	1981	1980	1979	1978	1977	1976	1975	
		X by No.	0.0	45.2	6.8	9.9	19.2	14.1	2.5	1.2	1.2	9.0	0.1	0.0	
1987 Total Run		X by Wt. X by No.	0.0	29.5	7.7	7.4	25.2	20.4	3.9	2.0	2.1	1.5	0.1	0.0	
1987 T	Biomass No.of Fish	(tons) (* 1,000)	0 5	101.747	20,032	14,970	43,152	31,694	2,680	2,731	2,650	1,810	163	0	
	Biomass	(tons)	0 6	7.970	2,076	2,005	6,813	5,515	1,063	252	266	336	33	•	
1987	Escapement	(tons)	0 8	7,101	1,721	1,520	4,858	3,833	785	364	356	255	18	0	
		Total		869	355	485	1,955	1,682	278	188	209	142	91	0	
(tons)	ì	Pound	.	436	59	07	17.	29	14	6	6	7		٥	
1987 Harvest (tons)		Gill Net	0 0		0	13	192	165	59	32	67	12	9	. •	
		Purse 5.		134	297	432	1,653	1,450	204	147	152	108	GN.	.0	
	y8e	Class	→ (N W	- 47	ιij	9	7	89	6	10	Ħ	12	춁	
	Year	Class	1986	1984	1983	1982	1981	1980	1979	1978	1977	1976	1975	1974	. '

Table 2. Prince William Sound District year-class composition of the 1987 Pacific herring harvest, escapement, and total run blomass and the 1988 projected blomass. Natural mortality rate (M) at age 8 = 0.450; Total 1987 herring blomass = 40,000 tons.

			% by No.		0.0	9.0	65.2	7.2	4.4	12.6	7.9	1.4	0.5	0.3	0.1	0.0		100.0
i de la compania del compania del compania de la compania del la compania de la compania del la compania d			% by Wc.		0.0	0.2	56.3	7.5	5.2	16.4	11.0	2.0	8.0	5.0	0.2	0.0		100.0
1988 U.S. Dratected Herrine Riceses	9		(tons) (* 1,000)		0	1,210	218,445	24,237	14,774	42,170	26,372	4,523	1,681	1,040	329	7		334,789
MK Protect	nafori cui	Blomass	(tons)		0	105	24,787	3,304	2,295	7,195	4,818	698	335	213	69	-		43,992
1088	9067	Age	Class		81	m,	7	'n	9	7	60	σ.	91	Π	21	134		
		Year	Class		1986	1985	1984	1983	1982	1981	1980	1979	1978	1977	1976	1975		
			% by No.	0.0	0.2	45.2	8.9	9.9	19.2	14.1	2.5	1.2	1.2	0.8	0.1	0.0		100.0
į	198/ TOCST MILE		I by Ht. I by No.	0.0	0.1	29.5	1.7	7.4	25.2	20.4	3.9	2.0	2.1	1.5	0.1	0.0		100.0
	1 /961	Blomess No.of Flah	(toxis) (* 1,000)	•	730	150,624	29,626	22,161	63,882	46,919	8,409	4,043	3,924	2,680	241	0		333,268
		Blomass	(tons)	0	45	11,799	3,073	2,969	10,086	8,164	1,574	817	837	587	ន	0		40,000
	1987	Escapement	(tons)	•	17	10,930	2,718	2,484	8,131	6,482	1,296	629	628	445	34	0	-	33,817
			Total	•	. .	698	355	485	1,955	1,682	278	188	509	142	16			6,183
	tons)		Pound	0	7	436	65	9	111	<i>L</i> 9	14	.	on.	7		0		754
	1987 Harvest (tons)		G111 Net		0	0	•	13	192	165	53	32	67	27	٠	•	-	543
\$ \$	ä		Purse S.	0	Ħ	434	297	432	1,653	1,450	707	147	152	108	6	0		4,886
		Age	No.of Fish Class Class	1	N	en	4	١	9	7	æ	on.	10	п	12	13+		Total
		Year	No.of Fish Class Clas	1986	1985	1984	1983	1982	1981	1980	1979	1978	1977	1976	1975	1974		

DAILY DATE				280 520	13,220	23,140 3,100 3,100 4,100 5,100 6,100	2550 3300 3000		000	1,220	212	1,070 290 5,740	300	52,192	
HONTAGUE D ISLAND T	6 %	55.4	8.7	100.0	@ =	(2)	160	•	200	\$6.	01	270	•	2,500	
KWICHT ISLAND	Biomass (tons)	14,960	2,340	27,020				~		9				0,	
NAKED ISLAND	Stratum	A 8	ں ص	Total	(2)	F		STRATUM	80	06	7	E 2		3,602	
CRANITE PT. ESTEER PASS				220		3 20 3 20 3 20 3 20	49.9 000		160	ลัก	IN D	(5,04	1904X 300	32,100	
PREEMANTLE CRANITE PT.		SIKALUM A		8	9 9	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.00	98		9	STRATUM	(E)	1,900	
VALDEZ ARN C PORT	e e	भ्राप्त		9 001		120	9 6	355	92.0			9 9		4.060	
TATITLEK			09	3.40 3.50	222	B0550	30	(8)	000	30	130	931 800 800 800 800 800 800 800 800 800 80	30	5,260	•
PORT				8	≉	150** 350**	***************************************	78)	130 **	2				1,610	
PORT		30	120	90	335	2	TUM C		20	S	30	30		1,100	
SIMPSON SREEP (\$		STRAT		9		44	•		AREA 20 TOTALS	•

Pacific herring biomass stratification schedule, Prince William Sound, 1987. Figure 1.

-7-

ACE 9065301

APPENDICES

St		_		
25	T3	-	ш	A

				Mean	Weighting			Number
Year	Age	Number	% by	Weight	Factor	% by	Biomass	of Fish
Class	Class	Sampled	Number	(g)	(g)	Weight	(tons)	(* 1,000)
			•				· ·	
1986	1		0.0	0	0	0.0	0	0
1985	2	1	0.0	73	73	0.0	3	31
1984	3	415	13.5	81	33,795	7.8	1,173	13,070
1983	4	250	8.1	107	26,836	6.2	932	7,873
1982	5	318	10.3	127	40,537	9.4	1,407	10,015
1981	, 6	1,015	32.9	146	148,155	34.4	5,143	31,965
1980	7	764	24.8	161	123,132	28.6	4,275	24,061
1979	. 8	141	4.6	170	24,035	5.6	834	4,441
1978	9	65	2.1	186	12,099	2.8	420	2,047
1977	10	66	2.1	192	12,702	2.9	441	2,079
1976	11	44	1.4	200	8,809	2.0	306	1,386
1975	12	4	0.1	192	767	0.2	27	126
1974	13+	0	0.0		. 0	0.0	0	0
, i 	Total	3,083	100.0	140	430,940	100.0	14,960	97,093

Stra	tum	R

				Mean	Weighting			Number
Year	Age	Number	% by	Weight	Factor	% by	Biomass	of Fish
Class	Class	Sampled	Number	(g)	(g)	Weight	(tons)	(* 1,000)
1986	1	0	0.0	0	0	0.0	0	· 0
1985	2	a	0.0	0	0	0.0	0	0
1984	3	190	32.4	72	13,680	19.1	554	6,983
1983	4	42	7.2	99	4,158	5.8	168	1,544
1982	5	51	8.7	119	6,069	8.5	246	1,874
1981	6	157	26.8	146	22,922	32.0	929	5,770
1980	7 ' 7	95	16.2	159	15,105	21.1	612	3,491
1979	8	19	3.2	181	3,439	4.8	139	698
1978	9	11	1.9	184	2,024	2.8	82	404
1977	10	12	2.0	191	2,292	3.2	93	441
1976	. 11	8	1.4	216	1,728	2.4	70	294
1975	12	1	0.2	169	169	0.2	7	37
1974	13+	0	0.0		0	0.0	0	0
	Total	586	100.0	122	71,586	100.0	2,900	21,536

a	_
Stratum	- 6

				Mean	Weighting			Number
Year	Age	Number	% by	Weight	Factor	% b y	Biomass	of Fish
Class	Class	Sampled	Number	(g)	(g)	Weight	(tons)	(* 1,000)
								
1986	1	0	0.0	0	. 0	0.0	0	0
1985	2	11	0.6	49	540	0.5	11	200
1984	3	1,495	86.1	64	95,614	81.8	1,914	27,154
1983	4	138	7.9	75	10,350	8.9	207	2,507
1982	5	40	2.3	97	3,861	3.3	. 77	727
1981	6	39	2.2	119	4,634	4.0	93	708
1980	7	12	0.7	130	1,564	1.3	31	218
1979	8	1	0.1	150	150	0.1	. · · · 3	18
1978	9	1	0.1	161	161	0.1	3	18
1977	10	0	0.0	0	0	0.0	0	0
1976	11	0	0.0	. 0	0	0.0	0	: 0
1975	12	0	0.0	0	0	0.0	0	. 0.
1974	13+	0	0.0		0	0.0		0
	Total	1,737	100.0	67	116,874	100.0	2,340	31,550

-	 	_

				Mean	Weighting			Number
Year	Age	Number	% by	Weight	Factor	% by	Biomass	of Fish
Class	Class	Sampled	Number	(g)	(g)	Weight	(tons)	(* 1,000)
					War to the con-			
1986	1	0	0.0	0	0	0.0	. 0	0
1985	2	2	0.3	58	116	0.2	17	262
1984	3	417	72.8	72	30,024	63.5	4,329	54,540
1983	4	62	10.8	86	5,332	11.3	769	8,109
1982	5	18	3.1	106	1,908	4.0	275	2,354
1981	6	36	6.3	125	4,500	9.5	649	4,708
1980	7	30	5.2	138	4,140	8.8	597	3,924
1979	. 8	4	0.7	150	600	1.3	87	523
1978	. 9	2	0.3	161	322	0.7	46	262
1977	10	1	0.2	220	220	0.5	32	131
1976	11	. 1	0.2	143	143	0.3	21	131
1975	12	0	0.0	. 0	0	0.0	0	0
1974	13+	0	0.0		0	0.0	. 0	0
	Total	573	100.0	83	47,305	100.0	6,820	74,943

Appendix B.1. Prince William Sound commercial purse seine harvest by age and year class, 1987.

					*			
				Mean	Weighting			Number
Year	Age	Number	% by	Weight	Factor	% by	Harvest	of Fish
Class	Class	Sampled	Number	(g)	(g)	Weight	(tons)	(* 1,000)
						-		ye tarah
1986	1	0	0.0	0	. 0	0.0	o	a
1985	2	1	0.1	73	73	0.0	1	18
1984	3 .	266	15.1	81	21,546	8.9	434	4,859
1983	4	139	7.9	106	14,734	6.1	297	2,539
1982	5	173	9.8	124	21,452	8.8	432	3,160
1981	6	570	32.3	144	82,080	33.8	1,653	10,413
1980	7	450	25.5	160	72,000	29.7	1,450	8,220
1979	. 8	60	3.4	169	10,140	4.2	204	1,096
1978	9	40	2.3	183	7,320	3.0	147	731
1977	10	39	2.2	193	7,527	3.1	152	712
1976	11	27	1.5	198	5,346	2.2	108	493
1975	12	2	0.1	213	426	0.2	9	37
1974	13+	0	0.0		O	0.0	0	0
	Total	1,767	100.0	137	242,644	100.0	4,886.0	32,279

Appendix B.2. Prince William Sound commercial gill net harvest by age and year class, 1987.

				Mean	Weighting			Number
Year	Age	Number	% by	Weight	Factor	% by	Harvest	of Fish
Class	Class	Sampled	Number	(g)	(g)	Weight	(tons)	(* 1,000)
			Wild Sta					
1986	1	0	0.0	0	0	0.0	0	0
1985	2	0	0.0	, 0	0	0.0	0	0
1984	3	0	0.0	10	. 0	0.0	0	0
1983	4	0	0.0	0	. 0	0.0	0	
1982	5	18	2.6	150	2,700	2.4	13	80
1981	6	256	37.3	154	39,424	35.3	192	1,131
1980	7	212	30.9	160	33,920	30.4	165	936
1979	8 ,	73	10.6	167	12,191	10.9	59	322
1978	9	37	5.4	175	6,475	5.8	32	163
1977	10	54	7.9	185	9,990	9.0	49	239
1976	11	29	4.2	192	5,568	5.0	27	128
1975	12	7	1.0	190	1,330	1.2	6	31
1974	13+	0	0.0	0	0	0.0	0	• . 0
	Total	686	100.0	163	111,598	100.0	543.4	3,030

Appendix B.3. Prince William Sound commercial purse seine pound harvest by age and year class, 1987.

Year Class	Age Class	Number Sampled	% by Number	Mean Weight (g)	Weighting Factor (g)	% by Weight	Harvest (tons)	Number of Fish (* 1,000)
							, ,	,
1986	1	0	0.0	0	0	0.0	0	0
1985	2	11	0.5	49	539	0.3	2	40
1984	3	1,685	72.5	65	109,525	57.8	436	6,078
1983	4	180	7.7	82	14,760	7.8	59	649
1982	5	91	3.9	111	10,101	5.3	40	328
1981	6	196	8.4	142	27,832	14.7	111	707
1980	7	107	4.6	157	16,799	8.9	67	386
1979	8	20	0.9	181	3,620	1.9	14	72
1978	9	12	0.5	184	2,208	1.2	9	43
1977	10	12	0.5	191	2,292	1.2	ģ	43
1976	11	8	0.3	216	1,728	0.9	.7	29
1975	12	1	0.0	169	169	0.1	1	4
1974	13+	0	0.0	0	0	0.0	0	0
	Total	2,323	100.0	82	189,573	100.0	753.8	8,380

Appendix C.1. Prince William Sound 1988 herring projection biomass spreadsheet; 1987 PWS total nm blomass $\approx 27,020$ tons. Natural Mortality at age 8 = 0.300

	:	A by Number	0.0	0.4	8.99	7.2	4.3	11.9	7.3	1.3	0.5	0.3	0.1	0.0		100.0
Lonass		Number of X by flsh(*1,000) Mumber	0	606	164,889	17,827	10,506	29,273	18,118	3,184	1,130	989	219	4		246,745
1988 Projected Blonass		% by Weight	0.0	0.2	58.1	7.6	5.1	15.5	10.3	1.9	7.0	4.0	0.1	0.0		100.0
1988	1988	Projection (tons)	0	62	18,710	2,430	1,632	4,995	3,310	612	225	140	9,	H		32,180
	1987	Escapement Projection (tons) (tons)	56	7,101	1,721	1,520	4,858	3,833	785	364	356	255	18	0		20,837
		Age Class	7	m	4	ŀΩ	6	7	60	6	91	11	ដ	‡		Total
		Ş														
		$A_{(L+1)}^{/A}(\epsilon) = A_{(L+1)}^{/A}(\epsilon)^{*e}^{(G-H)}$	2.99	2.63	1.41	1.07	1.03	0.86	0.78	0.62	0.39	0.18	0.05	0.01		
		A(t+1) ^{/A} (t)	2.45	2.45	1.43	1.14	1.14	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
		A(E) d		0.22	0.54	0.77	0.88	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
		(G-H)	1.22	1.07	0.99	0.94	0.90	98.0	0.78	0.62	0.39	0.18	0.05	0.01		
		*,	0.193	0.193	0.193	0.193	0.194	0.215	0.300	0.517	0.958	1.737	2.989	4.870		
		G. b	0.392	0.264	0.184	0.130	0.094	0.068	0.050	0.037	0.027	0.020	0.015	0.011		
		Age Interval	2-3	3-4	4-5	2-6	6-7	7-8	6-8	9-10	10-11	11-12	12-13	13-14		
	Mean Mr.	at time t (g) a	53.4	79.1	102.9	123.7	140.9	154.8	165.7	174.2	180.8	185.8	189.5	192.4	194.5	
		Age (t)	2	<u>و</u>	4	47	9	7	œ	o	10	#	12	13	14.	

^a Height at time t = 200.943 [1 - $\exp(-0.293(t+1.689))^{3.196}$.

Instantaneous growth rate (G) = $\ln |H_{(t+1)}/H_{(t)}|$.

C Instantaneous natural mortality rate (M) schedule from Purk and Sandone (In press).

d Availability (A) schedule from Funk and Sandone (In press).

^e Availability of age-2 herring unavailable. Therefore, A_3/A_2 was assumed to be at least equal to A_4/A_3 .

Appendix C.2. Prince William Sound 1988 herring projection biomass spreadsheet; 1987 PAS total run blomass $\approx 27,020$ tons. Natural Mortality at age 8 = 0.450

1987 1988 Projected Blomass 1987 1988 Projected Blomass 1.05 A(t.) A	_	ı	-													1		
Açt) d A(t+1)/A(t) A(t+1)/A(t),*e(G+10) Glass (tons) (tons) Height 2.45 e 2.58 (tons) (tons) Height 0.22 2.45 2.27 3 7,101 68 0.2 2.65 0 0 0.0 0.2 2.45 2.27 3 7,101 68 0.2 0.2 0.27 1.44 0.92 5 1,520 2,092 7.6 0.88 1.14 0.88 6 4,858 1,405 5.1 1.00 1.00 0.57 8 785 2,849 10.3 1.00 1.00 0.34 10 356 194 0.7 1.00 1.00 0.04 12 11 255 121 0.4 1.00 1.00 0.04 12 18 39 0.1 1.00 1.00 0.04 12 18 39 0.1 1.00 1.00 0.04 12 18 39 0.1 1.00 1.00 0.01 13 0.0 1	100.0			0.0	0.1	0.3	0.5	1.3	7.3	11.9	4.3	7.2	8.99	0.4	0.0	% by Number		
Age Escapement Project! A(t) d A(t+1)/A(t) A(t+1)/A(t)*e(G+f) Glass (tons) (tons) 2.45	212,376			7	189	290	973	2,741	15,594	25,195	6,043	15,344	141,921	783	0	Number of fish(*1,000)		SSERIES
A(t) d A(t+1) ¹ A(t) A(t+1) ¹ A(t) ^{*e} (G+1) Glass (tons)	100.0			0.0	0.1	4.0	0.7	1.9	10.3	15.5	5.1	7.6	58.1	0.2	0.0	% by Weight		riajectea
1987 Age Escaponent A(t) d A(t+1)/A(t) A(t+1)/A(t)*e(G+H) 0.22 2.45 2.27 3 7,101 0.54 1.43 1.22 4 1,721 0.77 1.14 0.88 6 4,858 1.00 1.00 0.74 7 3,833 1.00 1.00 0.67 8 785 1.00 0.04 1.25 11 256 1.00 1.00 0.34 10 356 1.00 1.00 0.15 11 255 1.00 1.00 0.04 12 18 1.00 1.00 0.01 13 0.01 1.00 1.00 0.01 13 0.01 1.00 1.00 0.01 13 11 255	27,698			н,	39	121	194	526	2,849	4,299	1,405	2,092	16,104	88	0	Projection (tons)	1988	790
A(t) d A(t+1)/A(t) A(t+1)/A(t)*e(G+H) Class 2.45 e 2.58 2 0.22 2.45 2.27 3 0.54 1.43 1.22 4 0.77 1.14 0.92 5 0.88 1.14 0.92 5 1.00 1.00 0.74 7 1.00 1.00 0.54 10 1.00 1.00 0.34 10 1.00 1.00 0.04 12 1.00 1.00 0.15 11 1.00 1.00 0.15 11 1.00 1.00 0.04 12	20,837			0	18	255	356	364	785	3,833	4,858	1,520	1,721	7,101	56	Escapement (tons)	1987	
A(t) d 0.22 0.24 0.34 0.38 1.00 1.00 1.00 1.00	Total			13	21	Ħ	97	6	80	7	v	so.	4	en	N			
A(t) d 0.22 0.54 0.54 0.28 1.00 1.00 1.00 1.00																£		
A(t) d 0.22 0.54 0.54 0.08 1.00 1.00 1.00 1.00				0.01	0.04	0.15	0.34	0.53	0.67	0.74	0.88	0.92	1.22	2.27	2.58	+1) ^{/A} (t)*e ^(G-)		
A(t) d 0.22 0.23 0.34 0.38 1.00 1.00 1.00 1.00 1.00																y (E		
				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.14	1.14	1.43	2.45	2.45 e	A(t+1) ^{/A} (t)		
6 (G-H) 1.05 0.92 0.82 0.81 0.74 0.74 0.07 0.04				1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.88	0.77	0.54	0.22		ν ^(τ) ^q		
				10.0	0.04	0.15	0.34	0.53	0.67	0.74	0.78	0.81	0.82	0.92	1.05	e (G-H)		
0.343 0.343 0.343 0.343 0.343 0.344 0.667 1.108 1.108 1.1887 3.139 5.020				5.020	3.139	1.887	1.108	0.667	0.450	0.365	0.344	0.343	0.343	0.343	0.343	M _L c		
6, b 0.392 0.264 0.130 0.037 0.050 0.037 0.027 0.020 0.015				0.011	0.015	0.020	0.027	0.037	0.050	0.068	0.094	0.130	0.184	0.264	0.392	G _t b		
Age Interval 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 11-12 12-13 13-14		-		13-14	12-13	11-12	10-11	9-10	8-9	7-8	6-7	2-6	4-5	3-4	2-3	Age Interval		
Mean Wt. (8) a (8) a 53.4 79.1 102.9 123.7 140.9 154.8 180.8 189.5 194.5			194.5	192.1	189.5	188.8	180.8	174.2	165.7	154.8	140.9	123.7	102.9	79.1	53.4	at time t (8) ^a	Mean Wt.	
Age (7) (7) (7) (1) 110 110 110 111 111 111 111 111 111 1			14	13	21	#	91	6	60	7.	9	· S	4	en :	N	Age (t)		

Weight at time t = 200.943 [1 - $\exp(-0.293(t+1.689)]^{3.196}$.

b Instantaneous growth rate (G) = In $\{H_{\{t+1\}}/H_{\{t\}}\}$. Contantaneous natural mortality rate (M) schedule from Purk and Sandone (In press).

d Availability (A) schedule from Funk and Sandone (In press).

e Availability of age-2 herring unavailable. Therefore, A₃/A₂ was assumed to be at least equal to A₄/A₃.

Appendix C.3. Prince William Sound 1988 herring projection biomass spreadsheet; 1987 PWS total run blomass = 27,020 tons. Natural Mortality at age 8 = 0.600

												1986	1988 Projected Blomass	Blomess	
	Wean Mt.										1987	1988			
Age (t.)	at time t (8) ^a	Age Interval	е р	بر 0	(G-H)	y (t) q	A(E+1)/A(E)	A(E+1)/A(E) A(E+1)/A(E)*e(G-H)	() (Age	Escapement (tons)	Projection (tons)	X by Weight	Number of % by flsh(*1,000) Number	% by Number
2	53.4	2-3	0.392	0.493	0.90		2.45 6	2.23		2	56				
m	79.1	3-4	0.264	0.493	0.80	0.22	2.45	1.95		en	7,101	53	0.2	7.29	0.4
4	102.9	4-5	0.184	0.493	0.73	0.54	1.43	1.05		. 4	1,721	13,861	58.1	121,153	8.99
'n	123.7	5-6	0.130	0.493	0.70	0.77	1.14	0.80		'n	1,520	1,801	7.6	13,207	7.2
9	140.9	6-7	760.0	0.494	19.0	0.88	1.14	97.0		9	4,858	1,209	5.1	7,783	4.3
7	154.8	7-8	0.068	0.515	0.64	1.00	1.00	99.0		7	3,833	3,700	15.5	21,686	11.9
æ	165.7	8-9	0.050	0.600	0.58	1.00	1.00	0.58		60	785	2,452	10.3	13,422	7.3
6	174.2	9-10	0.037	0.817	97.0	1.00	1.00	0.46		0	364	453	1.9	2,359	1.3
21	180.8	10-11	0.027	1.258	0.29	1.00	1.00	0.29		10	326	167	0.7	837	0.5
Ħ	185.8	11-12	0.020	2.037	0.13	1.00	1.00	0.13		11	255	104	0.4	208	0.3
12	189.5	12-13	0.015	3.289	0.04	1.00	1.00	0.04		12	18	34	0.1	162	0.1
13	192.4	13-14	0.011	5.170	0.01	1.00	1.00	0.01		E	0	7	0.0	E	0.0
14	194.5														
										Total	20,837	23,840	100.0	182,793	100.0
															-

Weight at time $t = 200.943 [1 - \exp(-0.293(t+1.689)]^{3.196}$

b Instantaneous growth rate (G) = ln $[M_{(t+1)}/M_{(t)}]$. C Instantaneous natural mortality rate (M) schedule from Runk and Sandone $(\underline{In~press})$.

d Availability (A) schedule from Funk and Sandone (In press).

 $^{\rm e}$ Availability of age-2 herring unavallable. Therefore, ${\rm A_3/A_2}$ was assumed to be at least equal to ${\rm A_4/A_3}$.

Appendix C.4. Prince William Sound 1988 herring projection biomass spreadsheet; 1987 PWS total run blomass = 40,000 tons. Natural Mortality at age 8 = 0.300

1		% by Number		0.4	65.2	7.2	4.4	12.6	7.9	1.4	0.5	0.3	7.0	0.0		ĺ	100.0
Blomass		Number of % by fish(*1,000) Number		1,406	253,799	28,160	17,165	48,995	30,640	5,255	1,953	1,209	383	65		-	388, 970
1988 Projected Blomss		X by Weight		0.5	56.3	7.5	5.2	16.4	11.0	2.0	0.8	0.5	0.2	0.0			100.0
198	1988	Projection (tons)	•	, 2 <u>1</u>	28, 799	3,839	2,666	8,360	5,598	1,009	389	248	88	64			51,112
1	1987	Escapement 1 (tons)	1	10,930	2,718	2,484	8,131	6,482	1,296	629	628	445	75	0			33,817
		Age	,	1 m	7	'n	9	7	20	6	10	п	12	134			Total
		£															
		A(t+1)/A(t)*e(G-Y)	8	2.63	1.41	1.07	1.03	0.86	97:0	0.62	0.39	0.18	0.05	0.01			
		A(t+1)/A(t)	e 27	2.45	1.43	1.14	1.14	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
		V (E) ^d		0.22	0.54	0.77	0.88	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
		е (G- M)	1 20	1.07	0.99	0.94	0.90	0.86	0.78	0.62	0.39	0.18	0.05	0.01			
	•	ر م	0 163	0.193	0.193	0.193	0.194	0.215	0.300	0.517	0.958	1.737	2.989	4.870			
		o u	295.0	0.264	0.184	0.130	0.094	0.068	0.050	0.037	0.027	0.020	0.015	0.011			
		Age Interval	Į į	3-4	4-5	9-5	2-9	7-8	6-8	9-10	10-11	11-12	12-13	13-14			
	Mean Wt.	at time t (g) a	7 55	79.9	102.9	123.7	140.9	154.8	165.7	174.2	180.8	185.8	189.5	192.4	194.5		
		Age (t)	6	l en	4	5	9		80	o n	10	#	Ħ	2	14		

Weight at time t = 200.943 [1 - $\exp(-0.293(t+1.689)]^{3.196}$.

b Instantaneous growth rate (G) = ln $[H_{(t+1)}/H_{(t)}]$. c Instantaneous natural mortality rate (M) schedule from Punk and Sandone (In press).

d Availability (A) schedule from Punk and Sandone (<u>In press</u>).

e Availability of age-2 herring unavallable. Therefore, A_2/A_2 was assumed to be at least equal to A_4/A_2 .

Appendix C.5. Prince William Sound 1988 herring projection blomass spreadsheet; 1987 PWS total nm blomass = 40,000 tons. Natural Mortality at age 8 = 0.450

1988 Projected Blomass

	<u>a</u>		0	4.4	7.5	7	4.	9:	<u>6.</u>	4.	9.5	.3	1.1	0.0		0.0
	E X 200) IN-L													0 .		9 100.0
	Number of X by fish(*1,000) Number		J	1,210	218,445	24,127	14,774	42,170	23,372	4,523	1,681	1,040	329			334,789
	X by Weight		0.0	0.2	56.3	7.5	5.2	16.4	11.0	2.0	0.8	0.5	0.2	0.0		100.0
1988	Projection (tons)		0	105	24,787	3,304	2,295	7,195	4,818	869	335	213	69	7		43,992
1987	Escapement (tons)		17	10,930	2,718	2,484	8,131	6,482	1,296	629	628	445	34	0		33,817
	Age Class	 	81	m		5	. •	1	œ	.	10	77	15	13+		Total
	£															(
	$A_{(t+1)}/A_{(t)}$ $A_{(t+1)}/A_{(t)}^{+e}$ (G-H)		2.58	2.27	1.22	0.92	0.88	0.74	0.67	0.53	0.34	0.15	0.04	10.0		
	₹															
	A(t+1) ^{/A} (2.45	2.45	1.43	1.14	1.14	1.00	1.00	1.00	1.00	1.00	1.00	1.00		=
	V (t) d		0.22	0.54	0.77	0.88	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
	e (G-H)		1.05	0.92	0.85	0.81	0.78	0.74	0.67	0.53	0.34	0.15	0.04	0.01		
	ئ چ		0.343	0,343	0.343	0.343	0.344	0,365	0.450	0.667	1,108	1.887	3.139	5.020		
	ر ي		0.392	0.264	0.184	0.130	0.094	0.068	0.050	0.037	0.027	0.020	0.015	0.011		
	Age Interval		2-3	, 4-E	. 4 4	. 47	2-9	7-8	8	9-10	10-11	11-12	12-13	13-14		
Mean Wt.	at time t (8) a		53.4	79.1	9 691	123.7	6 070	154.8	165.7	174.2	180.8	185.8	189.5	192.4	194.5	
	Age (t)	-	_			- *						-	ា	13	14	

[.] Weight at time t = 200.943 [1 - $\exp(-0.293(t+1.689))^3.196$.

b Instantaneous growth rate (G) = In $|W_{(t+1)}/W_{(t)}|$. c Instantaneous natural mortality rate (M) schedule from Funk and Sandone (In press).

Availability (A) schedule from Funk and Sandone (In press).

Availability of age-2 herring unavailable. Therefore, h_3/h_2 was assumed to be at least equal to A_4/h_3 .

Appendix C.6. Prince William Sound 1988 herring projection biomass spreadsheet; 1987 PWS total run blomass = 40,000 tons. Natural Mortality at age 8 = 0.600

	'	% by Number		0.0	65.2	7.2	4.4	12.6	7.9	1.4	0.5	0.3	0.1	0.0			100.0
Blomass		Number of fish(*1,000)		0 .	1,041	20,861	12,716	36,266	22,699	6,893	1,447	896	284	9			288,156
1988 Projected Blomass		X by Weight		0.0	4.2 56.3	7.5	5.2	16.4	11.0	2.0	8.0	0.5	0.2	0.0			100.0
198	1988	Projection (tons)		- 8	21,335	2,844	1,975	6,193	4,147	748	288	183	59	-			37,864
	1987	Escapement Projection (tons)		1, 60 01	2,718	2,484	8,131	6,482	1,296	629	628	445	ŧ	ø			33,817
		Age		N G	ণ ⊶ব	in	9	7	œ	6	9	11	12	13+			Total
		$A_{(E+1)}^{/A}(E) = A_{(E+1)}^{/A}(E)^{*e}^{(G-H)}$		27.77	1.05	0.80	97.0	0.64	0.58	0.46	0.29	0.13	0.04	10.0			
		A(t+1)/A(t)	1	2.45	1.43	1.14	1.14	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
		γ (ε) ^q		7 i	6.0	0.88	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
		(G-M)		R 8	0.73	0.70	19.0	0.64	0.58	97.0	0.29	. 0.13	0.04	0.01			
		¥,		0.493	0.493	0.493	0.494	0.515	0.600	0.817	1.258	2.037	3.289	5.170			
		e e	8	0.352	0.184	0.130	0.094	0.068	0.050	0.037	0.027	0.020	0.015	0.011			
		Age Interval		, j	4-5	9-5	2-9	7-8	6-8	9-10	10-11	11-12	12-13	13-14			
	Mean Wr.	at time t (g) a	5	7 2	102.9	123.7	140.9	154.8	165.7	174.2	180.8	185.8	189.5	192.4	194.5		
		Age (t)		u ~) 4	· · · ·	9	7	00	6	30	11	17	.ET ,	17		
			l													- 1	

^a Weight at time $t = 200.943 [1 - exp(-0.293(t+1.689)]^{3.196}$.

Instantaneous growth rate (G) = In $[V_{(t+1)}/V_{(t)}]$.

Constantaneous natural mortality rate (H) schedule from Purk and Sandone (In press).

d Availability (A) schedule from Funk and Sandone (In press).

e Avallability of age-2 herring unavailable. Therefore, Ag/Ag was assumed to be at least equal to Ag/Ag.